
CL

2

QCD - Part 1

M. Ba
h

‡
, O. Philipsen

†
, C. Pinke

†
and A. S
iarra

†

†
Institut für Theoretis
he Physik, Goethe Universität, Frankfurt am Main, Germany

‡
Frankfurt Institute for Advan
ed Studies / Institut für Informatik, Goethe-Universität, Frankfurt am Main, Germany

HGS-HIRe
Helmholtz Graduate School for Hadron and Ion Research

We present the Latti
e QCD (LQCD) appli
ation CL

2

QCD, whi
h is based on OpenCL and
an be run on Graphi

Pro
essing Units (GPUs) as well as on
ommon CPUs. We fo
us on implementation details as well as performan
e

results of sele
ted features. CL

2

QCD has been su

essfully applied in LQCD studies at �nite temperature and density

and is available at http://
ode.
ompeng.uni-frankfurt.de/proje
ts/
lhm
.

Latti
e QCD

• Importan
e Sampling: Generate gauge
on�gurations {Um} using Boltzmann-weight p[U, φ] = exp {−S
e�

[U, φ]}
with Hybrid-Monte-Carlo (HMC) algorithm [Duane et al., 1987℄.

�Observables:

〈K〉 ≈
1

N

∑

m

K[Um] ;

� E�e
tive a
tion S
e�

proportional to inverse fermion matrix D−1
.

•Most expensive ingredient to
urrent LQCD simulations: fermion matrix inversion

Dφ = ψ ⇒ φ = D−1 ψ .

� Carried out with Krylov subspa
e methods, e.g.
onjugate gradient (CG);

�Matrix-ve
tor produ
t Dφ has to be
arried out multiple times.

• LQCD fun
tions lo
al (depend on a number of nearest neighbours only) ⇒ very well suited for parallelization.

• LQCD operations limited by memory bandwidth. Most expensive part: Derivative part of D, so-
alled

/D.

Numeri
al density ρ =
Number of FLOPs

Number of Bytes to read and write

⇒
�Wilson fermions: ρ(/D) ∼ 0.57

� Staggered fermions: ρ(DKS) ∼ 0.35

⇒ LQCD requires hardware with a high memory-bandwidth to run e�e
tively

⇒ Meaningful measure for e�
ien
y is a
hieved bandwidth

OpenCL and Graphi
 Cards

Chip

Peak SP Peak DP Peak BW

{GFLOPS} {GFLOPS} {GB/s}

AMD Radeon HD 5870 Cypress 2720 544 154

AMD Radeon HD 7970 Tahiti 3789 947 264

AMD FirePro S10000 Tahiti 2×3410 2×850 2×240

NVIDIA GeFor
e GTX 680 Kepler 3090 258 192

NVIDIA Tesla K40 Kepler 4290 1430 288

AMD Opteron 6172 Magny-Cours 202 101 43

Intel Xeon E5-2690 Sandy Bridge EP 371 186 51

Table 1: Theoreti
al peak performan
e of
urrent GPUs and CPUs. SP and DP denote

single and double pre
ision, respe
tively. BW denotes bandwidth.

LOEWE -CSC

GPU nodes 786

GPUs/node 1 × AMD 5870

CPUs/node 2 × Opteron 6172

SANAM

GPU nodes 304

GPUs/node 2 × AMD S10000

CPUs/node 2 × Xeon E5-2650

Table 2: AMD based
lusters where CL

2

QCD

was used for produ
tion runs.

•Graphi
s Pro
essing Units (GPUs) surpass CPUs in peak performan
e as well as in memory bandwidth (see Table 1);

•GPUs
an be used for general purposes;

•Many
omputing
lusters are a

elerated by GPUs, for example LOEWE -CSC in Frankfurt [Ba
h et al., 2011℄ or

SANAM [Kal
her et al., 2013℄ (see Table 2);

•GPUs
onstitute inherently parallel ar
hite
ture;

• LQCD appli
ations are always memory-bandwidth limited ⇒ they
an bene�t from GPUs tremendously;

• In re
ent years the usage of GPUs in LQCD simulations has in
reased, mainly relying on CUDA as
omputing language,

appli
able to NVIDIA hardware only

1

.

OpenCL Devi
e Compute Unit Pro
essing element Lo
al memory Private memory Work � group Work item

CUDA GPU Multipro
essor S
alar
ore Shared (per-blo
k) memory Lo
al memory Blo
k Thread

Table 3: OpenCL and CUDA terminology.

•Hardware independent approa
h to GPU appli
ations given by Open Computing Language (OpenCL)

2

.

•OpenCL is an open standard to perform
al
ulations on heterogeneous
omputing platforms ⇒ GPUs and CPUs
an

be used together within the same framework, taking advantage of their synergy and resulting in a high portability of

the software. First attempts to do this in LQCD in [Philipsen et al., 2011℄.

• See Table 3 for a
omparison of CUDA and OpenCL terminology.

Figure 1: OpenCL
on
ept

•An OpenCL appli
ation
onsists of a host program
oordinat-

ing the exe
ution of the a
tual fun
tions,
alled kernels, on

omputing devi
es (Figure 1). A devi
e
an for instan
e be a

GPU or a CPU.

•Although the hardware has di�erent
hara
teristi
s, GPU pro-

gramming shares many similarities with parallel programming

of CPUs. A
omputing devi
e
onsists of multiple
ompute

units. When a kernel is exe
uted on a
omputing devi
e, a
tu-

ally a huge number of kernel instan
es is laun
hed. They are

mapped onto work-groups
onsisting of work-items. The work-

items are guaranteed to be exe
uted
on
urrently only on the

pro
essing elements of the
ompute unit (and share pro
essor

resour
es on the devi
e).

• Compared to the main memory of traditional
omputing systems, on-board memory
apa
ities of GPUs are low, though

in
reasing more and more

3

. This
onstitutes a
lear boundary for simulation setups. Also,
ommuni
ation between

host system and GPU is slow, limiting workarounds in
ase the available GPU memory is ex
eeded. Nevertheless, as

�nite T studies are usually
arried out on moderate latti
e sizes (in parti
ular Nσ ≫ Nτ), this is less problemati
 for

the use
ases CL

2

QCD was developed for.

1

See https://developer.nvidia.
om/
uda-zone and the QUDA library: https://github.
om/latti
e/quda .

2

See https://www.khronos.org/open
l .

3

For instan
e, the GPUs given in Table 2 have on-board memory
apa
ities of 1 GB and 3 GB, respe
tively.

CL

2

QCD Features

• First OpenCL appli
ation for Wilson fermions [Ba
h et al., 2013℄, fo
using on Twisted Mass Wilson fermions

[Frezzotti and Rossi, 2004; Shindler, 2008℄ (automati
 O(a) improvement at maximal twist);

• Staggered fermions in standard formulation;

• Improved gauge a
tions;

• Standard inversion and integration algorithms;

• ILDG-
ompatible IO

4

;

•RANLUX Pseudo-Random Number Generator (PRNG)

5

[Lüs
her, 1994℄.

Exe
utables:

•HMC: Generation of gauge �eld
on�gurations for Nf = 2 (Twisted Mass) Wilson type fermions using the HMC

algorithm [Duane et al., 1987℄;

•RHMC: Generation of gauge �eld
on�gurations for staggered type fermions using the Rational HMC algorithm

[Clark and Kennedy, 2007℄;

• SU3HEATBATH: Generation of gauge �eld
on�gurations for SU(3) Pure Gauge Theory using the heatbath

algorithm [Cabibbo and Marinari, 1982; Creutz, 1980; Kennedy and Pendleton, 1985℄;

• INVERTER: Measurements of fermioni
 observables on given gauge �eld
on�gurations;

•GAUGEOBSERVABLES: Measurements of gauge observables on given gauge �eld
on�gurations.

4

Via LIME, see http://usq
d.jlab.org/usq
d-do
s/
-lime .

5

See https://bitbu
ket.org/ivarun/ranlux
l .

CL

2

QCD Code Stru
ture

•Host program of CL

2

QCD set up in C++ ⇒ allows for independent program parts using C++ fun
tionalities and

naturally provides extension
apabilities.

•Cross-platform
ompilation provided using CMake framework

6

.

•The
ode stru
ture of CL2QCD is displayed in Figure 2. Two main
omponents:

� The physi
s pa
kage, representing high-level fun
tionality;

� The hardware pa
kage, representing low-level fun
tionality.

The meta pa
kage
olle
ts what is needed to
ontrol the program exe
ution and IO operations.

•All parts of the simulation
ode are
arried out using OpenCL kernels in double pre
ision.

•OpenCL kernels sour
e �les:

� Contain
on
rete implementations of basi
 LQCD fun
tionality like matrix-matrix multipli
ation, but also more

omplex operations like the

/D or the (R)HMC for
e
al
ulation;

�OpenCL language based on C99;

� Compilation and exe
ution is handled within the hardware pa
kage;

�Kernels in a
ertain way deta
hed from host part (host
an
ontinue independently of kernel exe
ution status)

⇒ Clear separation into administrative part (host) and performan
e-
riti
al
al
ulations (kernels).

6

See http://www.
make.org .

M

E
T
A

Parameters

Utilities

ILDG IO

P
H
Y
S
I
C
S

Algorithms

Implementation of algorithms using

Lattices and Fermionmatrix objects

• HMC

• RHMC

• HEATBATH

• SOLVER

• INTEGRATOR

• METROPOLIS

Lattices

Representations of lattice fields

Operations on fields

• GAUGEFIELD

• FERMIONFIELD

• GAUGEMOMENTA

Fermionmatrix

Matrix operations on fermion fields

• WILSON

• TWISTED MASS

• STAGGERED

Observables

• GAUGEOBSERVABLES

• 〈ψ̄ψ〉

• CORRELATORS

PRNG

• RANLUX

Noise Sources

• POINT • Z2

• GAUSSIAN • Z4

H
A
R
D
W

A
R
E

Buffers

Representation of OpenCL buffer

Device-dependent: AOS or SOA

• SU3

• SU3VEC

• SPINOR

• GAUGEMOMENTA

• · · ·

Code

Execution of specific OpenCL kernels

Meta information about kernels

• SPINOR ALGEBRA

• FERMIONS

• MOLECULAR DYNAMICS

• GAUGEFIELD

• · · ·

OpenCL Compiler

Compilation of OpenCL kernels
Reread functionality

Device

Represenation of specific device

Provides Code modules

System

Repr. of current architecture
Provides available OpenCL devices

OpenCL Kernels

Code for execution on device

Compiled at runtime

• PLAQUETTE

• SAXPY

• DSLASH

• GAMMA5

• · · ·

Figure 2: CL

2

QCD
ode stru
ture (illustrative). Pa
kages and substru
tures are realized as namespa
es.

•The physi
s pa
kage provides representations of the physi
al obje
ts like gauge �elds or fermion �elds. In addition,

the
orresponding
lasses provide fun
tionality to operate on the respe
tive �eld type. Moreover, algebrai
 operations

like saxpy are provided. Similarly, the various fermion matri
es are provided. This allows for the implementation of

high-level fun
tionality without knowing details of the underlying OpenCL stru
ture. For example, the (R)HMC or

the
al
ulation of observables are
ompletely independent of system or kernel spe
i�
s. In other words, the physi
s

pa
kage works as an interfa
e between algorithmi
 logi
 and the a
tual OpenCL implementation.

• In turn, the hardware pa
kage is destined to handle the
ompilation and exe
ution of the OpenCL kernels. The

hardware::System
lass represents the ar
hite
ture available at runtime. The latter
an provide multiple
om-

puting devi
es (i.e. CPUs and/or GPUs), whi
h are represented by hardware::Devi
e obje
ts and initialized

based on runtime parameters. Kernels are organized topi
-wise within the hardware::
ode namespa
e, e.g. in

the hardware::
ode::Fermions
lass. These
lasses take over the
alling logi
 of the kernels and provide meta

informations like the number of FLOPs a spe
i�
 kernels performs. The hardware::Devi
e
lass has ea
h of the

hardware::
ode
lasses as singleton obje
ts, i.e. they are initialized the �rst time they are needed. During this

pro
ess, the OpenCL kernels are
ompiled.

•Memory management is performed by the hardware::buffers
lasses, whi
h also ensure that memory obje
ts are

treated in a Stru
ture of arrays (SOA) fashion on GPUs, whi
h on these is
ru
ial for optimal memory a

ess as

opposed to Array of stru
tures (AOS).

•OpenCL kernels are
ompiled at runtime using the OpenCL
ompiler
lass. In OpenCL, this is mandatory as the

spe
i�
 ar
hite
ture is not known a priori. On the one hand, this introdu
es an overhead, but on the other hand

allows to pass runtime parameters (like the latti
e size) as
ompile time parameters to the kernels, saving arguments

and enabling
ompiler optimization for spe
i�
 parameter sets. In addition, the
ompiled kernel
ode is saved for

later reuse, e.g. when resuming an HMC
hain with the same parameters on the same ar
hite
ture. This redu
es

the initialization time. Kernel
ode is
ommon to GPUs and CPUs, devi
e spe
i�
s are in
orporated using ma
ros.

